MODÈLE SCALAIRE DES ONDES LUMINEUSES

Sommaire I Propagation de la lumière dans l'approximation de l'optique géométrique 3 I.1 Situation historique de l'optique				
	Ι	Pro	pagation de la lumière dans l'approximation de l'optique géométrique	3
		I.1	Situation historique de l'optique	3
		I.2	Formulation des ondes lumineuses	3
			a - Rappels essentiels : ondes 1D	3
			b - La lumière est une onde électromagnétique $!\!!\!!$ - Une des expériences de Wiener	4
			c - Ecriture d'une onde électromagnétique progressive harmonique - pulsation,	
			célérité, fréquence, longueur d'onde - Onde sphérique	5
			d - Abandon du caractère vectoriel de la lumière : le modèle scalaire de la	
			lumière - condition de validité	7
		I.3	Condition de validité de l'optique géométrique - rayons lumineux	8
			a - Le problème de la diffraction	8
			b - Rayons lumineux- synthèse des visions géométrique et ondulatoire de la	
			lumière	9
	Π	Proj	pagation et chemin optique	10
		II.1	Chemin optique : définition et signification physique	10
		II.2	Retard de phase et chemin optique - lien avec la durée de propagation	10
			a - Cas d'une onde sphérique en MLHI d'indice $n \ (= cste \ donc !) \ . \ . \ .$	10
			b - Cas général d'une onde quelconque émise par un point source en milieu à	
			priori non MLHI $(n \neq \text{cste donc}) \dots \dots \dots \dots \dots \dots \dots \dots \dots$	11
		II.3	Surfaces d'onde	11
		II.4	Théorème de Malus-Dupin	12
		II.5	L'onde sphérique à grande distance : vers l'onde plane $\ldots \ldots \ldots \ldots \ldots \ldots$	13
	III	Acti	on des lentilles dans l'approximation de Gauss - traduction du stigmatisme	
		rigo	ureux	16
		III.1	Stationnarité du chemin optique entre deux points conjugués : stigmatisme rigoureux	
			(à connaitre parfaitement !!!)	16
		III.2	Exemple d'application : chemin optique dans une lentille (à connaitre parfaitement !!!)	17

\mathbf{IV}	Mod	lèles de sources lumineuses - propriétés	18
	IV.1	Rappel sur le domaine spectral du rayonnement visible	18
	IV.2	Sources thermiques : la lampe à incandescence	18
	IV.3	Sources de raies : lampes spectrales	19
	IV.4	Source quasi-monochromatique : le L.A.S.E.R.	22
	IV.5	Relation "temps-fréquence" : lien avec la largeur spectrale en longueur d'onde	23
	IV.6	Bilan : modélisation d'un train d'onde de source	24
\mathbf{V}	Inte	nsité lumineuse - détection de la lumière	24
	V.1	Définition de l'intensité lumineuse	24
	V.2	Détection et valeurs moyennes d'intensité - problème du temps de réponse	24
	V.3	Retour sur la notation complexe - utilité	26

I Propagation de la lumière dans l'approximation de l'optique géométrique

I.1 Situation historique de l'optique

L'optique est très généralement la science qui étudie les phénomènes lumineux. Ces derniers étant accessibles à l'oeil humain, l'optique fut un centre d'intérêt dès l'antiquité avec l'optique géométrique, et a subi une révolution récente et très marquante au début du XX^{ème} siècle avec la naissance de l'optique quantique. Entre temps, le XIX^{ième} siècle vit l'émergence de l'optique ondulatoire. Afin de correctement situer chacune des branches de cette discipline de la physique dans son évolution, on peut retenir les dates marquantes suivantes :

- ► Optique géométrique :
 - ◊ Réflexion métallique connue de Platon au IX^{ième} siècle AJC.
 - ◊ Lois quantitatives de la réflexion et réfraction au XVII^{ième} siècle par Snell (1621) et Descartes(1637).
- ► Optique ondulatoire :
 - Modèle vibratoire de la lumière selon Hooke 1665 (analogue aux ondes mécaniques), puis Huyghens en 1678 : permet d'expliquer qualitativement la diffraction et les interférences.
 - ◊ Explication quantitative des interférences par Young en 1801 puis Fresnel en 1818 explique la diffraction.
 - ◊ Lien avec l'électromagnétisme : la lumière est une onde électromagnétique prouvé par Wiener en 1889.
- ► Optique quantique :
 - ◊ Einstein à l'aide de la théorie de Planck en 1905 : la lumière possède en plus du caractère ondulatoire un caractère corpusculaire. :

$$E$$
 $= h imes
u$ fréquence du photor

 ◊ Einstein décrit le processus d'émission stimulée en 1917 et Kastler l'exploite en 1950 pour déboucher en 1953 sur l'invention du Laser (Maser en fait).

I.2 Formulation des ondes lumineuses

a - Rappels essentiels : ondes 1D

Imaginons la propagation d'un signal f(x,t) entre les points $A(x_A)$ et $B(x_B)$ d'une durée $t_B - t_A$:

FIGURE V.1 – Propagation d'un signal unidimensionnel

Si le phénomène se déplace à la célérité v entre ces deux points dans le sens des x croissants, alors on a :

$$\Delta x = x_B - x_A = v(t_B - t_A) = v\Delta t$$

soit :

$$t_B - \frac{x_B}{v} = t_A - \frac{x_A}{v}$$

ou encore :

$$\Delta \underbrace{\left(t - \frac{x}{v}\right)}_{\text{gpt spatio-tempor.}} = 0$$

<u>A RETENIR</u> : lors la propagation d'un signal f(x,t) entre les points A et B

le groupement de variables t - x/v est un invariant lorsque l'on reproduit à t_B en B d'abscisse x_B la valeur qu'avait l'onde à t_A en A d'abscisse x_A .

On a donc : $t_A = t_B - \frac{\Delta x}{v}$ soit :

$$f(B, t_B) = f(A, t_A) = f\left(A, t_B - \underbrace{\frac{\Delta x}{v}}_{\text{terme de retard}}\right)$$

"**Traduction**" : le signal possède en (B, t_B) la valeur qu'il avait en $(A, t_A = t_B - \frac{\Delta x}{v}) \implies$ Propagation !!!

Le "terme de retard" $\frac{\Delta x}{v} = \frac{x_B - x_A}{v}$ correspond naturellement au temps mis par l'onde pour parcourir la distance AB

Remarque - (I.2) - 1:

Pour un phénomène propagatif se déplaçant dans le sens des x décroissants entre A et B, on trouverait

de même :
$$f(B,t_B) = f(A,t_A) = f\left(A,t_B + \frac{\Delta x}{v}\right)$$

b - La lumière est une onde électromagnétique !!! - Une des expériences de Wiener

Autour de 1889, Wiener mène une série d'expériences sur la lumière, dont l'une, décisive, permit d'établir expérimentalement et définitivement le caractère électromagnétique de la lumière visible.

Principe :

► un faisceau de lumière parallèle est envoyé sur un miroir métallique ⇒ superposition des lumières incidente et réfléchie.

 \blacktriangleright une plaque photographique transparente est disposée devant le plan métallique, et inclinée d'un angle lphapar rapport à ce dernier selon un axe horizontal (cf schéma).

OBSERVATIONS : le film photographique est imprimé de tâches équidistantes et occupant toute la largeur du faisceau de lumière.

FIGURE V.2 – L'une des expériences de Wiener

INTERPRÉTATION :

Un système d'ondes stationnaires électromagnétiques s'établit, et dont les ventres d'amplitude distants¹ de impriment la plaque photographique sur toute la largeur de la lumière.

 $\frac{\lambda}{2}$,

Ceci permit à Wiener d'établir que LA LUMIÈRE EST BIEN UNE ONDE ÉLECTROMAGNÉTIQUE

NB : cf simulation en cours et sur le site.

Ecriture d'une onde électromagnétique progressive harmonique - pulsation, célérité, сfréquence, longueur d'onde - Onde sphérique

i.) Expression générale d'une OEM quelconque

<u>HYPOTHÈSE</u> : signal électromagnétique harmonique se propageant dans un milieu d'indice n = cste (milieu linéaire homogène isotrope (MLHI)).

A RETENIR : le signal se propage dans le milieu et s'écrit alors en un point M :

COMMENTAIRES :

 $\blacktriangleright \varphi(M)$ s'appelle le retard de phase spatiale de l'onde en M par rapport à l'origine des phases ou plus simplement phase spatiale de l'onde en M, tandis que $\tau_{S_0M} = \frac{\varphi(M)}{\omega}$ est le temps de retard de l'onde

1. cf. Ondes stationnaires MPSI et Réflexion des ondes électromagnétiques MP (chapitre ultérieur)

• ω $(rad.s^{-1})$ est la pulsation temporelle de l'onde. Elle s'écrit en fonction de la période temporelle T (s):

$$\omega = \frac{2\pi}{T}$$

► La fréquence de l'onde est :

$$\boxed{\frac{\omega}{2\pi} = \frac{1}{T} \ (Hz)}$$

- ▶ E(M) est l'amplitude du champ électrique de l'onde en M ($V.m^{-1}$).
- ▶ \overrightarrow{e} est un vecteur unitaire qui donne la direction du champ électrique de l'onde. On appelle cette caractéristique la polarisation de l'onde.
- ► La longueur d'onde dans le vide s'écrit :

$$\lambda_0 = c \cdot T$$

La longueur d'onde dans le milieu de propagation d'indice n s'écrit :

$$\lambda = v \cdot T = \frac{c}{n} \cdot T = \frac{\lambda_0}{n}$$

ii.) Expression particulière de l'OEM sphérique

<u>HYPOTHÈSE</u> : signal électromagnétique harmonique se propageant dans un milieu d'indice n = cste (milieu linéaire homogène isotrope (MLHI)) émis par un point source S_0 unique.

<u>A RETENIR</u> : le milieu étant homogène d'indice n = cste, l'onde émise par le point source S_0 se propage de manière sphérique. Dans ces conditions, le temps de retard est :

$$\tau_{S_0M} = \frac{\varphi(M)}{\omega} = \frac{\phi(M) - \phi(S_0)}{\omega} = \frac{S_0M}{v} = \frac{n \cdot S_0M}{c}$$

v étant la vitesse de propagation de l'onde dans le milieu. On admettra qu'elle s'écrit alors :

$$\overrightarrow{E}(t,M) = \frac{K_{S_0}}{S_0M} \cos \left[\omega \left(t - \underbrace{\frac{S_0M}{v}}_{\text{temps de retard}} \right) \right] \cdot \overrightarrow{e}$$

ou encore :

$$\overrightarrow{E}(t,M) = \frac{K_{S_0}}{r} \cos\left(\omega t - \underbrace{kr}_{\text{retard de phase}}\right) \cdot \overrightarrow{e} = \overrightarrow{E}(t,\underbrace{r}_{\text{caractéristique}})$$

en posant : $\begin{cases} k = \frac{\omega}{v} = n\frac{\omega}{c} = n\frac{2\pi}{cT} = n\frac{2\pi}{\lambda_0} \text{ le nombre d'onde (pulation spatiale)} \\ r = S_0 M \end{cases}$

d - Abandon du caractère vectoriel de la lumière : le modèle scalaire de la lumière - condition de validité

Une vibration lumineuse quelconque en ${\cal M}$ peut se noter :

$$\overrightarrow{E}(M,t) = \psi(M,t) \cdot \overrightarrow{e} = \psi_0(M) \cdot \cos(\omega t - \varphi(M)) \cdot \overrightarrow{e}$$

 \overrightarrow{e} QUESTION : à quelle condition peut-on abandonner le caractère vectoriel de la lumière i.e. le vecteur unitaire

 $\underline{\text{RÉPONSE}}$: l'étude des interférences par exemple nécessite en général d'additionner au moins deux vibrations lumineuses en M pour former la vibration résultante :

$$\overrightarrow{E}(M,t) = \overrightarrow{E_1}(M,t) + \overrightarrow{E_2}(M,t) = \psi_1(M,t) \cdot \overrightarrow{e_1} + \psi_2(M,t) \cdot \overrightarrow{e_2}$$

Deux cas de figure classiques peuvent se présenter :

FIGURE V.3 – Polarisation perpendiculaire au plan des sources

Dans ce cas on a : $\overrightarrow{e_1} = \overrightarrow{e_2} = \overrightarrow{e}$. On peut donc écrire :

$$\overrightarrow{E}(M,t) = \overrightarrow{E_1}(M,t) + \overrightarrow{E_2}(M,t) = \left[\psi_1(M,t) + \psi_2(M,t)\right] \overrightarrow{e}$$

En revanche, dans la seconde situation exposée ci-dessous, on a $\overrightarrow{e_1} \simeq \overrightarrow{e_2}$ uniquement si les sources sont éloignées du point M i.e. $S_1M, S_2M >> a$.

FIGURE V.4 – Polarisation parallèle au plan des sources

On supposera dans la suite que l'on a toujours

$$\overrightarrow{e_1} = \overrightarrow{e_2}$$

<u>A RETENIR :</u>

▶ On abandonne le caractère vectoriel des ondes pour une formulation scalaire définitive. Ainsi une onde quelconque en un point *M* s'écrira :

$$\vec{E}(M,t) \rightarrow \psi(M,t) = \psi_0(M)\cos(\omega t - \varphi(M))$$

► La vibration lumineuse appelé grandeur scalaire de l'optique est une composante du champ électrique de l'onde électromagnétique. Compte tenu de l'hypothèse sur la polarisation, elle contient toute l'information nécessaire à l'étude de l'optique ondulatoire élémentaire.

I.3 Condition de validité de l'optique géométrique - rayons lumineux

a - Le problème de la diffraction

Supposons un faisceau de lumière parallèle monochromatique (λ) incident sur un diaphragme de diamètre D. On montre dans le cadre de la diffraction que cette limitation de l'espace de passage de la vibration lumineuse provoque un phénomène de diffraction, soit un «éparpillement angulaire» de la lumière.

EXPÉRIENCE DE COURS : diffraction par un trou circulaire de la lumière émise pas un laser.

FIGURE V.5 – Diffraction d'un faisceau de lumière

<u>A RETENIR</u> : on montre que l'effet d'«éparpillement» ne se manifeste que si le diamètre D du diaphragme est de l'ordre de grandeur de la longueur d'onde soit

$$\boxed{\frac{\lambda}{D} \sim 1}$$

Dans ces conditions on a :

$$\sin\theta \sim \frac{\lambda}{D}$$

<u>A RETENIR</u> : on définit le cadre de l'approximation de l'optique géométrique comme le domaine des très faibles longueurs face aux dimensions des diaphragmes de passage de la lumière, soit :

$$\frac{\lambda}{D} << 1 \implies \theta \simeq 0 \implies \begin{array}{c} \text{condition de propagation} \\ \text{pagation} \\ \text{éparpillement} \end{array}$$

b - Rayons lumineux- synthèse des visions géométrique et ondulatoire de la lumière

Deux descriptions de la lumière :

► VISION DE L'OPTIQUE GÉOMÉTRIQUE

Dans le cadre de l'optique géométrique, la lumière est décrite par des rayons lumineux :

n(M) Sens de propagation $\vec{u}(M)$

FIGURE V.7 – Propagation d'un rayon lumineux en milieu homogène n(M)=cste

FIGURE V.6 – Propagation d'un rayon lumineux en milieu inhomogène $n(M) \neq cste$

► VISION DE L'OPTIQUE ONDULATOIRE

Dans le cadre de l'optique ondulatoire, la lumière est décrite par la vibration scalaire décrite plus haut :

$$\psi(M,t) = \psi_0(M)\cos(\omega t - \varphi(M))$$

On retiendra la propriété suivante établissant la synthèse des deux visions :

Propriété - (I.3) - 1:

Dans le cadre de l'optique géométrique i.e. des très faibles longueurs d'onde face aux dimensions des diaphragmes $\lambda \ll D$, l'onde lumineuse se déplace selon la direction des rayons lumineux.

<u>A RETENIR</u> : on associe donc à chaque rayon une onde de phase $\varphi(M)$ en M

rayon lumineux
$$\Leftrightarrow \psi(M,t) = \psi_0(M) \cos(\omega t - \varphi(M))$$

II Propagation et chemin optique

II.1 Chemin optique : définition et signification physique

Interprétation physique :

Imaginons que la lumière se déplace entre A et B dans un milieu d'indice n non nécessairement constant (milieu inhomogène) :

$$L_{AB} = \stackrel{\frown}{AB} = (AB) = \int_{A}^{B} n \cdot ds = \int_{A}^{B} \frac{c}{v} \cdot ds = \int_{A}^{B} c \cdot dt = c\tau_{AB}$$

Ainsi : le chemin optique représente la distance que parcourrait la lumière dans le vide pendant la même durée τ_{AB} que dans le milieu d'indice n.

<u>Remarque</u>: le chemin optique est une grandeur algébrique : $AB = -BA = -L_{BA}$

II.2 Retard de phase et chemin optique - lien avec la durée de propagation

a - Cas d'une onde sphérique en MLHI d'indice n (= cste donc !)

On rappelle l'une des expressions possibles de l'onde sphérique :

$$\psi(M,t) = \frac{K_{S_0}}{S_0 M} \cos(\omega t - k S_0 M)$$

or $k=\frac{2\pi}{\lambda}=n\frac{2\pi}{\lambda_0}=nk_0$ donc :

$$\psi(M,t) = \frac{K_{S_0}}{S_0 M} \cos(\omega t - k_0 \underbrace{nS_0 M}_{\text{chemin optique } S_0 M})$$

CPGE MP3...

soit finalement :

$$\psi(M,t) = \frac{K_{S_0}}{S_0 M} \cos(\omega t - k_0 S_0 M)$$

ou encore :

$$\psi(M,t) = \frac{K_{S_0}}{S_0 M} \cos\left[\omega \left(t - \frac{S_0 M}{c}\right)\right] = \frac{K_{S_0}}{S_0 M} \cos\left[\omega \left(t - \tau_{S_0 M}\right)\right]$$

A retenir : pour une onde harmonique sphérique

- Lien entre le retard de phase et le chemin optique : $\varphi(M) = \phi(M) \phi(S_0) = k_0 S_0 M$
- ► Formulations :

b - Cas général d'une onde quelconque émise par un point source en milieu à priori non MLHI ($n \neq \text{cste donc}$)

On peut généraliser le résultat précédent avec une onde de forme quelconque toujours émise par le point source S_0 dans un milieu d'indice n non néccessairement homogène :

$$\psi(M,t) = \psi_{S_O}(M) \cos\left[\omega \left(t - \tau_{S_0 M}\right)\right]$$

qui devient avec la définition du chemin optique, soit : $au_{S_0M} = \frac{S_0M}{c}$

$$\psi(M,t) = \psi_{SO}(M)\cos(\omega t - \frac{\omega}{c}S_0M) = \psi_{SO}(M)\cos(\omega t - k_0S_0M)$$

A retenir : pour une onde harmonique de forme quelconque

► Formulations :

$$\diamond \text{ R\'eelle}: \overbrace{\psi(M,t) = \psi_{S_0}(M) \cos(\omega t - k_0 S_0^{\frown} M)}_{\diamond} \text{ avec } k_0 = \frac{\omega}{c} = \frac{2\pi}{\lambda_0}$$
$$\diamond \text{ Complexe}: \underbrace{\psi(M,t) = \psi_{S_0}(M) \cdot e^{j(\omega t - k_0 S_0^{\frown} M)}}_{\psi(M,t)} = \psi_{S_0}(M) \cdot e^{j(\omega (t - \tau_{S_0 M}))}$$

II.3 Surfaces d'onde

<u>A RETENIR :</u>

Définition - (II.3) - 2:

On appelle surface d'onde d'une onde en propagation, l'ensemble des points M de l'espace pour lesquels l'onde possède à un instant t donné la même valeur :

Surface d'onde
$$\Leftrightarrow M/\psi(M,t)|_{tfixé} = cste$$

Ceci impose la constance du terme de phase, ou du terme de retard temporel, ou bien sûr du chemin optique sur la surface d'onde, soit :

Surface d'onde
$$\Leftrightarrow M / \begin{cases} \varphi(M) = cste \\ ou \\ \tau_{S_0M} = cste \\ ou \\ S_0M = cste \end{cases}$$

NB : les surfaces d'onde sont également désignées par surfaces "équiphase" ou surface "iso-chemin optique".

Exemples :

► Onde quelconque en milieu non homogène :

► Onde sphérique (en MLHI) :

II.4 Théorème de Malus-Dupin

<u>A RETENIR</u> : (théorème admis)

```
Propriété - (II.4) - 2:
```

Les rayons lumineux sont perpendiculaires aux surfaces d'onde ou surfaces équiphases.

Illustrations :

FIGURE V.9 – Les surfaces d'onde sont des cercles de centre le point d'émission S_0

 $\label{eq:Figure V.10-Cas} Figure \ V.10-Cas \ d'une \ surface \ d'onde \ quelconque$

FIGURE V.11 – Cas d'une surface d'onde sphérique

 M_3

 $\varphi(M) = cste$

II.5 L'onde sphérique à grande distance : vers l'onde plane

<u>Hypothèses</u> :

Supposons une source S_0 ponctuelle émettant une onde sphérique harmonique de longueur d'onde λ_0 dans le vide et se déplaçant dans le milieu d'indice n. On peut noter cette onde en M:

$$\psi(M,t) = \frac{K_{S_0}}{S_0 M} \cos(\omega t - \varphi(M)) = \frac{K_{S_0}}{S_0 M} \cos\left(\omega t - (\phi(M) - \phi(S_0))\right)$$

► Plaçons-nous à grande distance de la source, par exemple $S_0M \simeq 1m >> \lambda_0 \simeq 1\mu m$ (ordre de grandeur longueur d'onde du visible).

 $\mathbf{Question}:$ que devient l'amplitude dans ces conditions?

Réponse : on peut par exemple calculer la variation relative d'amplitude sur une distance λ .

Sur une longueur d'onde, l'amplitude varie de :

$$\frac{K_{S_0}}{S_0 M} = \frac{K_{S_0}}{1m}$$

à

^{...} Jean-Laurent GRAYE

FIGURE V.12 – Cas des rayons à travers une lentille

$$\frac{K_{S_0}}{1m + \lambda_0(m)}$$

soit une variation relative de :

$$\rho = \frac{\frac{K_{S_0}}{1m} - \frac{K_{S_0}}{1m + \lambda_0(m)}}{\frac{K_{S_0}}{1m}} \simeq \frac{\lambda_0(m)}{1m} << 1$$

On peut donc considérer que l'amplitude de l'onde ne varie pas à cette échelle de déplacement ainsi : donc :

$$\frac{K_{S_0}}{S_0M}\simeq cste=K=\psi_0$$

Question : Que devient l'expression du déphasage $\varphi(M) = \phi(M) - \phi(S_0)$ à grande distance ?

 $\frac{\text{Réponse}}{\text{A grande distance les surfaces d'onde sont des plans}}$:

On doit considérer 2 cas de figure :

Si O est sur le même rayon lumineux issu de la source en S_0 que M (cas a), alors le déphasage de l'onde peut s'écrire :

 $\rm FIGURE~V.14$ – Surface d'onde à grande distance de la source

$$\phi(M) - \phi(S_0) = \phi(M) - \phi(O) + \phi(O) - \phi(S_0) = k_0 OM + k_0 S_0 O = nk_0 OM + nk_0 S_0 O$$

Cas b) : O et M sur deux rayons parallèles distincts

FIGURE V.15 – Ecriture du retard de phase loin de la source

Introduisons le vecteur d'onde $\overrightarrow{k} = nk_0 \overrightarrow{u}$, vecteur portant le rayon lumineux et donc perpendiculaire aux surfaces d'onde :

$$\phi(M) - \phi(S_0) = \overrightarrow{k} \cdot \overrightarrow{OM} + nk_0S_0O$$

Ainsi l'onde plane s'écrit en notation complexe :

$$\psi(M,t) = \psi_0 \cdot e^{j \left[\omega t - \overrightarrow{k} \cdot \overrightarrow{OM} \underbrace{-nk_0 S_0 O - \phi_0}_{=cste}\right]}$$

Si maintenant O est sur un rayon lumineux issu de la source en S_0 et parallèle au rayon portant M (cas b), alors le déphasage de l'onde peut s'écrire en introduisant le point H projeté de M sur le rayon portant O:

$$\phi(M) - \phi(S_0) = \underbrace{\phi(M)}_{=\phi(H)\text{car H et M équiphase}} -\phi(O) + \phi(O) - \phi(S_0) = \overrightarrow{k} \cdot \overrightarrow{OH} + nk_0S_0O = \overrightarrow{k} \cdot \overrightarrow{OM} + nk_0S_0O$$

Ainsi :

$$\psi(M,t) = \psi_0 \cdot e^{j \left[\omega t - \overrightarrow{k} \cdot \overrightarrow{OM} - \underbrace{nk_0 S_0 O - \phi_0}_{=cste} \right]} \quad \text{même expression} !!!$$

III Action des lentilles dans l'approximation de Gauss - traduction du stigmatisme rigoureux

III.1 Stationnarité du chemin optique entre deux points conjugués : stigmatisme rigoureux (à connaitre parfaitement !!!)

On considère 2 rayons lumineux parallèles arrivant sur une lentille convergente inclinés par rapport à l'axe optique.

Par retour inverse de la lumière $\rightarrow S'$ source ponctuelle émettant vers la lentille avec faisceau parallèle en sortie. Par théorème de Malus \rightarrow le plan perpendiculaire au rayons passant par M_1 et M_2 est un plan équiphase (plan d'onde), donc M_1 et M_2 à égal chemin optique de la source, soit :

$$S'M_1 = S'M_2$$

Ainsi avec :
$$\begin{cases} \widehat{S'M_1} = -\widehat{M_1S'} \\ \widehat{S'M_2} = -\widehat{M_2S'} \end{cases}$$
 donc :
$$\widehat{M_1S'} = \widehat{M_2S'}$$

Par ailleurs, en appelant S_0 la source, on a :

$$S_0 M_1 = S_0 M_2$$

donc en sommant membre à membre ces deux dernières égalités, on tire que :

$$S_0M_1 + M_1S' = S_0M_2 + M_2S'$$

donc :

$$\left(\stackrel{\frown}{S_0S'} \right)_{\text{rayon (1)}} = \left(\stackrel{\frown}{S_0S'} \right)_{\text{rayon (2)}}$$

soit :

$$L_1 = L_2 \rightarrow$$
 stationnarité du chemin optique entre S_0 et S'

<u>GÉNÉRALISATION :</u>

```
Propriété - (III.1) - 3:
```

Entre deux points conjugués A et A' par un système centré quelconque rigoureusement stigmatique, le chemin optique $L_{AA'}$ est stationnaire pour tout rayon lumineux.

Dans le système centré représenté ci-dessous, le chemin optique entre les points A et A' est identique quelque soit le rayon considéré : $L_{AA'}(1) = L_{AA'}(2) = \ldots = L_{AA'}(i) \quad \forall i$

III.2 Exemple d'application : chemin optique dans une lentille (à connaitre parfaitement !!!)

On considère une source ponctuelle S_0 située à l'infini et éclairant une lentille. Soient deux rayons lumineux 1 et 2 incidents respectivement en A et B situés sur la surface de la lentille On supposera que l'indice du milieu extérieur à la lentille est le vide (n = 1).

- Calculer $\hat{S_0B} \hat{S_0A}$ i.e. la différence de chemin optique entre (1) et (2) avant la lentille.
- **2** Calculer $\stackrel{\frown}{BS'} \stackrel{\frown}{AS'}$ i.e. la différence de chemin optique entre (1) et (2) après la lentille.

$$\hat{S_0B} - \hat{S_0A} = S_0B - S_0A = \underbrace{S_0H}_{=S_0A} + HB - S_0A = HB = AB\sin\alpha$$

Par ailleurs S_0 et S^\prime sont conjugués donc : $S_0BS^\prime=S_0AS^\prime$ soit :

$$\stackrel{\frown}{S_0B} + \stackrel{\frown}{BS'} = \stackrel{\frown}{S_0A} + \stackrel{\frown}{AS'}$$

soit :

$$\overrightarrow{BS' - AS'} = \overrightarrow{S_0A} - \overrightarrow{S_0B} = -AB\sin\alpha = -HB$$

CONCLUSION : une lentille n'introduit pas de différence de marche entre objet et image conjugués.

IV Modèles de sources lumineuses - propriétés

IV.1 Rappel sur le domaine spectral du rayonnement visible

Rayons gamma	Rayons X	UV	Infrarouge (IR)	Radars, micro- ondes	FM	τv	SW	AM
10 ⁻¹⁴ 10 ⁻¹ Longueur d'onde (en mètres)	² 10 ⁻¹⁰	10 ⁻⁸	10 ⁻⁶ 10 ⁻ du visible	4 10-2	1	1	0 ²	104
400 nm	500 nm		600 nm	7	'00 _. 1	nm		

Domaine de rayonnement étudié en optique physique :

λ	$\lambda_{min} = 0, 4\mu m$	$\lambda_{max} = 0, 8\mu m$
ν	$7, 5.10^{14} Hz$	$3,75.10^{14} Hz$
T	$1, 3.10^{-15} s$	$2, 6.10^{-15} s$

On retiendra $\fbox{$T_{vis}\simeq 10^{-15}$ s}$

IV.2 Sources thermiques : la lampe à incandescence

 $P_{RINCIPE}$: les sources dites thermiques correspondent à des corps portés à des températures élevées qui rayonnent du fait de l'excitation de leurs charges mobiles ou fixes autour de leur position d'équilibre \Rightarrow rayonnement de multiples dipôles oscillants.

Cas classiques :

- ▶ Soleil $T \simeq 5800 \ K$.
- ▶ Lampe à filament $T \simeq 2500 \ K$.

Le spectre correspondant est continu et correspond à celui du "corps noir" (Travaux de Kirschoff et Planck). Ci-dessous, on a représenté la loi de Planck, donnant la densité volumique spectrale de ce rayonnement :

NB: $[u_{\lambda}(\lambda, T)] = E \cdot L^{-3} \cdot L^{-1} = E \cdot L^{-4} \Rightarrow J \cdot m^{-4}$

COMMENTAIRES : on constate que le domaine spectral du visible est couvert par ce rayonnement

IV.3 Sources de raies : lampes spectrales

<u>Principe</u>: décharges électriques dans un gaz (contenu dans une ampoule) permettant l'excitation des atomes à des niveaux d'énergie supérieurs au niveau fondamental pendant durée $\tau_e \Rightarrow$ émission d'ondes lors de la désexcitation de durée limitée $\tau_c \equiv$ train d'onde.

La fréquence (ou pulsation) du train d'onde émis est donnée par la relation du quantum de Planck, avec :

$$\Delta E_{f \to e} = E_{exc} - E_{fond} = h\nu_0 = \hbar\omega_0 \quad \text{avec} \quad \begin{cases} h = 6, 62.10^{-34} \ J.s \\ \hbar = \frac{h}{2\pi} \end{cases}$$

soit :

$$\nu_0 = \frac{E_{exc} - E_{fond}}{\hbar} \quad \text{ou} \quad \omega_0 = \frac{E_{exc} - E_{fond}}{\hbar}$$

On rappelle la relation d'incertitude temps-fréquence (dégagée en cours d'électrocinétique) :

$$\Delta\nu_0 \times \tau_e \sim 1 \Rightarrow \Delta E \times \tau_e \sim h \quad \text{soit} : \Delta E = \frac{h}{\tau_e}$$

Ainsi : La valeur d'un niveau d'énergie est connue à une incertitude près ΔE ce qui conduit à l'expression de la largeur naturelle de raie $\Delta \nu_0$:

$$\Delta \nu_0 = \frac{\Delta E}{h} = \frac{1}{\tau_e}$$

ORDRE DE GRANDEUR : $\tau_e \simeq 10^{-9} \ s \ \text{donc} \ \Delta \nu_0 \simeq 1 GHz \ll \nu_0 \ \text{et} \ \Delta E \simeq \frac{6,62.10^{-34}}{10^{-9}} = 6,62.10^{-25} \ J \sim 4\mu eV \ll E$

Ainsi, les raies sont à priori quasimonochromatiques, or on constate que :

$$\Delta \nu_{exp} >> \Delta \nu_0 \Rightarrow Mécanisme???$$

donc d'autres phénomènes élargissent les raies.

Mécanisme d'émission :

Hypothèse : un atome est excité

désexcitation spontanée à la date $t = t_1 = 0$ (origine arbitraire des temps) avec une phase aléatoire : émission d'une onde par l'atome de durée τ_{c_1} d'expression :

$$\overrightarrow{E_1}(r=0,t) = \underbrace{\overrightarrow{E_{10}}}_{\text{polarisation donnée}} \cos(\omega t - \underbrace{\phi_1(t=t_1=0)}_{\text{phase aléatoire}}) \quad \text{pendant } \tau_{c_1}$$

 \blacksquare après une nouvelle excitation aléatoire puis désexcitation spontanée à $t = t_2 \neq 0$: nouvelle émission spontanée d'une durée τ_{c_2} d'expression :

$$\overrightarrow{E_2}(r=0,t) = \underbrace{\overrightarrow{E_{20}}}_{\text{polarisation donnée}} \cos(\omega t - \underbrace{\phi_2(t_2)}_{\text{phase aléatoire}}) \quad \text{pendant } \tau_{c_2}$$

donc polarisation et phase ne sont fixées que pendant la durée d'un train d'onde soit pour $\Delta t = \tau_c$.

 $\underline{\text{CONSÉQUENCE}} : \text{c'est donc } \tau_c \text{ qui détermine la largeur spectrale avec} : \boxed{\Delta \nu_{exp} \cdot \tau_c \sim 1} \\ \mathbf{Qu'est ce qui fixe la valeur de } \tau_c \text{ telle que } \Delta \nu_{exp} = \frac{1}{\tau_c} \text{ (largeur spectrale du train d'onde)? :}$

2 phénomènes peuvent fixer $au_c \simeq rac{1}{\Delta
u}$:

 $\begin{array}{l} & \Delta\nu \\ \diamond \mbox{ Elargissement par effet Doppler (distribution Gaussienne)} : \tau_{c_{dopp}} \simeq \frac{1}{\Delta\nu_{Doppler}} = 10^{-9} \ s \\ \diamond \mbox{ Elargissement de raie par collision (distribution Lorentzienne)} : \tau_{c_{coll}} \simeq \frac{1}{\Delta\nu_{Coll}} = 10^{-11} \ s \end{array}$

Remarque - (IV.3) - 2:

Un train d'onde réel prend plutôt la forme d'un paquet d'onde (cf cours dispersion) amorti, dont la durée moyenne au_c est fixée par les caractéristiques de la source : haute pression : au_c faible, basse pression : τ_c plus élevé (car moins de collision)

On adopte ici le modèle de la sinusoïde tronquée par souci de simplification.

"Digression" hors programme : détermination des temps de cohérence en fonction des profils spectraux de source.

► Cas du profil gaussien (lampe basse pression)

L'intensité spectrale de la source est donnée par : $I_{\nu}(\nu) = \frac{dI}{d\nu} = I_{0\nu}e^{-\frac{(\nu-\nu_0)^2}{2\sigma^2}}$. On recherchera la largeur à mi-hauteur $\Delta \nu_{\frac{1}{2}}$ caractérisant la largeur spectrale; formellement, cela se traduit naturellement par :

$$\frac{I_{\nu}(\nu)}{I_{0\nu}} = e^{-\frac{\Delta\nu_1^2}{2\sigma^2}} = \frac{1}{2}$$

Après calcul élémentaire, on dégage que :

$$\Delta \nu_{\frac{1}{2}} = 2 \cdot \sqrt{2} \sigma (\ln 2)^{\frac{1}{2}} \simeq 2,35\sigma$$

avec σ dépendant de la température de la source (agitation thermique des atomes). soit :

$$\tau_c = \frac{1}{\Delta \nu_{\frac{1}{2}}} = \frac{1}{2,35\sigma}$$

► Cas du profil lorentzien (lampe haute pression)

L'intensité spectrale d'une source à profil Lorentzien est donnée par : $I_{\nu}(\nu) = \frac{dI}{d\nu} = \frac{1}{1 + 4\pi^2 \tau^2 (\nu - \nu_0)^2}$ La même démarche que dans le cas du profil gaussien conduit à :

$$\Delta\nu_{\frac{1}{2}}=2\frac{1}{2\pi\tau}=\frac{1}{\pi\tau}$$

soit :

$$\tau_c = \frac{1}{\Delta \nu_{\frac{1}{2}}} = \pi \tau$$

IV.4 Source quasi-monochromatique : le L.A.S.E.R.

$\mathsf{NB}: \mathbf{L.A.S.E.R.}: \mathbf{Light} \ \mathbf{Amplification} \ \mathbf{by} \ \mathbf{Stimulated} \ \mathbf{Emission} \ \mathbf{of} \ \mathbf{Radiation}$

Principe : améliorer le temps de cohérence τ_c en augmentant la proportion de l'émission stimulée (Einstein 1917).

En réalité, l'émission d'un photon par un atome excité peut se produire selon deux mécanismes :

 $\begin{cases} Emission spontanée ou aléatoire idem lampe spectrale classique \\ \underline{Emission stimulée} \longrightarrow on cherche à augmenter cette proportion ! \end{cases}$

Dans l'émission stimulée, c'est le choc avec un photon qui provoque l'émission d'un nouveau photon par l'atome.

Ce "nuage de photons" est enfermé dans une cavité résonnante accordée sur $\nu_0 \Rightarrow$ Amplification de la proportion de photons corrélés. Les autres modes sont absorbés lors de la phase transitoire de mise en marche.

 $\underline{\text{CONSÉQUENCES}}: \text{ lumière quasimonochromatique (avec très faible largeur spectrale). Ordre de grandeur <math>\tau_c \simeq 1 \ \mu s.$

 \diamond

<u>Exercice de cours</u>: (IV.4) - n° 1 Calculer la largeur spectrale d'un Laser He-Ne sachant que $\tau_c \simeq 1 \mu s$ RÉPONSE :

La relation d'incertitude temps fréquence s'écrit $\Delta \omega \times \tau_c \simeq 2\pi$ soit $\Delta \nu \times \tau_c \simeq 1$. On en déduit :

$$\Delta \nu_{LASER} \simeq 1 \ MHz \ll \nu_0$$

IV.5 Relation "temps-fréquence" : lien avec la largeur spectrale en longueur d'onde

Reprenons la relation temps-fréquence :

 $\Delta\nu \times \Delta t \simeq 1$

En outre la fréquence ν d'une vibration monochromatique est liée à sa longueur d'onde et la célérité c de la lumière dans le vide (on pose ici n = 1 par souci de simplification) : $\nu = \frac{c}{\lambda}$ qui donne par différenciation : $d\nu = -\frac{c}{\lambda^2} \cdot d\lambda$

soit une variation (en valeur absolue) au premier ordre : $\Delta \nu = \frac{c}{\lambda^2} \cdot \Delta \lambda$ La relation temps fréquence devient alors :

$$\frac{c}{\lambda^2} \cdot \Delta \lambda \times \Delta t \sim 1$$

soit en isolant la largeur spectrale en longueur d'onde :

$$\Delta \lambda = \frac{\lambda^2}{c\Delta t}$$

Pour une source, Δt représente le temps de cohérence τ_c de celle-ci, donc : <u>A RETENIR :</u>

Propriété - (IV.5) - 4:

La largeur spectrale en longueur d'onde d'une source est liée à son temps de cohérence τ_c par :

$$\Delta \lambda = \frac{\lambda^2}{c\tau_c} = \frac{\lambda^2}{L_c}$$

avec L_c longueur de cohérence ou longueur d'un train d'onde.

QUELQUES ORDRES DE GRANDEUR :

	$\lambda_0 \ (nm)$	$\Delta\lambda \ (nm)$	$ au_c(s)$	$L_c(m)$
Laser He-Ne	632,8	10^{-3}	10^{-9}	0,3
Raie H_{lpha} hydrogène (Balmer)	656, 2	0, 1	10^{-11}	0,004
lumière naturelle solaire	500	400	2.10^{-15}	6.10^{-7}
lumière blanche filtrée	500	20	3.10^{-14}	10^{-5}

CONCLUSION : pour les sources spectrales et les Laser, on a : $\tau_c >> T \implies$ les trains d'onde sont longs.

IV.6 Bilan : modélisation d'un train d'onde de source

Pour toute la suite du cours d'optique ondulatoire, on adoptera le modèle de la sinusoïde tronquée (période T) pour représenter un train d'onde compte tenu de $\tau_c >> T$, avec $\vec{e}(t)$ vecteur unitaire de polarisation fixé seulement durant τ_c , $\phi(t)$ sa phase à l'origine fixé seulement durant τ_c , E_0 son amplitude et ω sa pulsation :

 $\psi(\underbrace{r=0}_{\text{sur l'atome!!!}}, t) = \psi_0 \times \cos(\omega t - \phi(t)) \quad \text{pendant } \tau_c >> T_{vis}$

donc un train d'onde comporte un nombre important de périodes.

V Intensité lumineuse - détection de la lumière

V.1 Définition de l'intensité lumineuse

```
<u>A RETENIR :</u>
```

```
\begin{array}{l} \hline \text{DÉFINITION - (V.1) - 3:} \\ \hline \text{On définit l'intensité d'une vibration lumineuse } \psi(M,t) \ \text{en } M \ \text{par :} \\ \hline & I = K \cdot \psi(M,t)^2 \quad (\text{unité arbitraire}) \\ \hline & \underline{\text{NB : } K \ \text{constante arbitraire sans grande importance car on exploite souvent en optique un rapport} \\ & d'intensité \frac{I(M,t)}{I_{max}}. \end{array}
```

V.2 Détection et valeurs moyennes d'intensité - problème du temps de réponse

D'après ce qui précède, l'intensité lumineuse *I* est une fonction du temps or d'après l'expérience, on ne constate pas de fluctuation temporelle de celle-ci lorsqu'elle est observée par l'oeil.

QUESTION : comment l'oeil (ou un autre détecteur) mesure-t-il I?

Propriété - (V.2) - 5:

▶ L'oeil, et la majorité des détecteurs sont sensibles à l'intensité lumineuse, grandeur proportionnelle au carré de la vibration lumineuse.

Les détecteurs usuels sont quadratiques.

► L'oeil et la majorité des détecteurs "mesurent" sur une durée d'acquisition τ_a minimale, et donnent donc in fine la valeur moyenne du signal sur τ_a .

Principe de la mesure : En fait toute mesure n'est pas instantanée, mais réalisée sur la durée minimale d'acquisition du détecteur τ_a , ainsi l'appareil fait une mesure de la valeur moyenne sur τ_a soit :

$$I = \langle I(t) \rangle_{\tau_a} = \frac{1}{\tau_a} \int_{t}^{t+\tau_a} I(t') \cdot dt'$$

<u>2 Cas peuvent se présenter :</u>

Si le détecteur est rapide, soit $\tau_a << T$ alors :

$$I(t) \simeq I(t') \quad \text{pour } t \le t' \le t + \tau_a$$

soit :

$$\boxed{I = \frac{1}{\tau_a} \int\limits_t^{t+\tau_a} I(t') \cdot dt' \simeq I(t) \frac{1}{\tau_a} \int\limits_t^{t+\tau_a} \cdot dt' = I(t)}$$

SI LE DÉTECTEUR EST LENT (C'EST LE CAS GÉNÉRAL), SOIT $\tau_a \ge T$ ALORS (SOUVENT $\tau_a >> T$) : la mesure est celle d'une valeur moyenne :

mesure est cene à une valeur moyenne.

$$I = < I(t) >_{\tau_a}$$

QUELQUES ORDRES DE GRANDEUR DE TEMPS DE RÉPONSE (ET LEURS CONSÉQUENCES) :

On rappelle le domaine des longueurs d'onde des vibrations dans le visible : $\lambda \in [0, 4; 0, 8 \ \mu m]$ soit avec

 $T_{vis} = \frac{\lambda}{c} \in \left[1, 3.10^{-15} \ s; 2, 6.10^{-15} \ s\right]$

- ▶ Oeil humain : $\tau_a \simeq 0, 1 \ s >> T_{vis} \rightarrow$ perception de la valeur moyenne uniquement
- ▶ Photopile : $\tau_a \simeq 300 \ ns >> T_{vis} \rightarrow$ perception de la valeur moyenne uniquement
- ▶ Photomultiplicateur : $\tau_a \simeq 10 100 \ ns >> T_{vis} \rightarrow$ perception de la valeur moyenne uniquement
- ▶ Photodiode ou phototransistor : $\tau_a \simeq 1 \ ns >> T_{vis} \rightarrow$ perception de la valeur moyenne uniquement
- ► Mesure "femtoseconde" $\tau_a \simeq T_{vis} \rightarrow$ mesure «rapide» de phénomène optique, mais par voie indirecte (ex :spectroscopie chimique). Pourquoi ne pas vous lancer dedans en TIPE?!!

<u>A RETENIR</u> : cas usuel $\tau_a >> T$ l'intensité mesurée est donc :

$$I = < I(M_{detec}, t) >_{\tau_a} = K < \psi(M_{detec}, t)^2 > = K\psi_0^2(M_{detec}) < \cos^2(\omega t - \varphi(M_{detec})) >_{\tau_a} = \frac{K}{2}\psi_0^2(M_{detec})$$

V.3 Retour sur la notation complexe - utilité

Reprenons l'expression d'une vibration lumineuse harmonique de forme quelconque :

$$\psi(M,t) = \psi_0(M) \cdot \cos(\omega t - \varphi(M))$$

Compte tenu de son caractère harmonique, on lui associe la vibration complexe suivante :

$$\psi(M,t) = \psi_0(M) \cdot e^{j(\omega t - \varphi(M))}$$

$$I = K < \psi(M,t)^2 >_{\tau_c} = \frac{1}{2} K \psi_0^2(M) = \frac{1}{2} K \mathcal{R}_e\left[\underline{\psi}(M,t) \cdot \underline{\psi}(M,t)^*\right] = \frac{1}{2} K\left[\underline{\psi}(M,t) \cdot \underline{\psi}(M,t)^*\right]$$

soit finalement :

<u>A RETENIR :</u>

$$I(M) = K < \psi(M,t)^2 >= \frac{K}{2}\psi_0(M)^2 = \frac{1}{2}K\left[\underline{\psi}(M,t)\cdot\underline{\psi}(M,t)^*\right]$$